Interactive Exhibit: *Turntable*

Description:
A supply of small plastic disks and rings 7–10 cm in diameter, is scattered round the stationary portion of the table top. A ring spinning on edge may stay on the turntable for a while, orbiting the center and performing a complex series of curving motions. A disk laid flat will move in a straight line as soon as it slides off the turntable. This complex curving motion is due to the “Coriolis Effect” a result of comparing rotating frames of reference.

Experiment with different disks and notice how they move on the turntable. Loosely grip a wheel just behind the outer edge. Lower it onto the turntable and allow it to start spinning in your hand. Once it is up to speed and stable, you can let it go. How long will it spin? Do the various disks behave differently?

Information:
- 5-10 participants at a time
- Self-guided

Sunshine State Standards Addressed:

1st Grade:
- 1.E.5.3 Explain how magnifiers make things look bigger & allow us to see things not visible to our eyes alone.

3rd Grade:
- 3.E.5.5 Explain that many more stars are visible in a telescope than can be seen with eyes alone.
- 3.P.10.4 Demonstrate that light can be reflected, refracted and absorbed.

4th Grade:
- 4.E.6.5 Investigate how technology and tools help to extend the ability of humans to observe very small things and very large things.

7th Grade:
- 7.P.10.2 Observe and explain that light can be reflected, refracted and/or absorbed.

9th – 12th Grade:
- 912.E.5.8 Explain how historical tools as well as new observational tools utilize electromagnetic radiation.
- 912.P.10.22 Construct ray diagrams and use thin lens and mirror equations to locate the images formed by lenses and mirrors.
This project sponsored in part by the State of Florida, Department of State, Division of Cultural Affairs, the Florida Arts Council, and the National Endowment for the Arts.